ANNEE SCOLAIRE: 2017/2018

Classe: 1re L

M.FALL

EQUATIONS ET INEQUATIONS DU SECOND DEGRE

EXERCICE 1:

Factoriser le trinôme f(x) dans chaque cas (forme canonique) puis en déduire la solution de l'équation f(x) = 0.

a)
$$f(x) = x^2 + x - 6$$
; b) $f(x) = x^2 + 2x - 8$; c) $f(x) = x^2 + 6x + 16$;
d) $f(x) = -2x^2 - 5x + 3$; e) $f(x) = -3x^2 + 6x - 2$

EXERCICE 2:

Résoudre dans IR, les équations suivantes :

a)
$$x^2 + 16x + 63 = 0$$
; b) $x^2 + 4 = 0$; c) $x^2 - 10x + 24 = 0$; d) $-5x^2 + 2x\sqrt{5} - 1 = 0$;
e) $-\frac{1}{2}x^2 - \frac{11}{3}x - \frac{7}{6} = 0$; f) $-x^2 = -4x^2 - 4x + 1$; g) $3x - 7x^2 + 2 = 0$;
h) $2x^2 - x\sqrt{2} - 1 = 0$; i) $x^2\sqrt{2} + (1 + \sqrt{2})x + 1 = 0$

EXERCICE 3:

- 1) Trouver deux nombres entiers consécutifs sachant que la somme de leurs carrés est 2813.
- 2) a. Déterminer deux nombres dont la somme est S=27 et leur produit P=50.
- b. Même question pour S = -8 et P = 16.

EXERCICE 4:

Résoudre dans IR

a)
$$\frac{2x^2+5x+3}{3x^2+x-2} = 0$$
; b) $\frac{(2x^2+x-15)(x+3)}{x^2+5} = 0$

EXERCICE 5:

Résoudre dans IR, les inéquations suivantes :

a)
$$-x^2 - 4x + 5 > 0$$
; b) $x^2 + x - 3 > 0$; c) $5x^2 - 4x + 12 < 0$; d) $-3x^2 + 4x - 2 < 0$;

e)
$$(2x-3)(-2x^2+5x+3) > 0$$
; f) $(1-4x)(x^2+x+1) \le 0$;

g)
$$(2x^2 + 5x + 3)(3x^2 + x - 2) \le 0$$
; h) $\frac{-x^2 + 4x - 21}{\frac{1}{2}x^2 + x\sqrt{2} + 1} < 0$

EXERCICE 6:

Résoudre dans IR^2 les systèmes suivants :

a)
$$\begin{cases} x + y = 5 \\ xy = -24 \end{cases}$$
 b) $\begin{cases} xy = \frac{3}{10} \\ x + y = \frac{23}{10} \end{cases}$ c) $\begin{cases} \frac{1}{x} + \frac{1}{y} = 5 \\ xy = \frac{1}{6} \end{cases}$

[«] Les mathématiques, si on les regarde comme il faut, possèdent non seulement la vérité, mais une suprême beauté.»

EXERCICE 7:

Résoudre les équations bicarrées suivantes :

a)
$$x^4 + x^2 - 6 = 0$$

a)
$$x^4 + x^2 - 6 = 0$$
 b) $x^4 - 19x^2 + 48 = 0$

EXERCICE 8:

1) Déterminer deux nombres réels $x_1 \ et \ x_2$ sachant que :

$$x_1 + x_2 = -1$$
 et $x_1 \times x_2 = -90$

2) Déterminer deux nombres réels $x_1 \ et \ x_1$ sachant que :

$$x_1 \times x_2 = -6$$
 et $\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{6}$

3) Trouver une équation du second degré ayant pour racines $x_1=2\ et\ x_2=-3$

EXERCICE 9:

Résoudre dans IR²

a)
$$\begin{cases} xy = 15 \\ x - y = 2 \end{cases}$$

a)
$$\begin{cases} xy = 15 \\ x - y = 2 \end{cases}$$
 b) $\begin{cases} x^2 - xy + y^2 = 13 \\ xy = -2 \end{cases}$

<< On ne peut plus expliquer le monde, faire ressentir sa beauté à ceux qui n'ont aucune connaissance des mathématiques >>

Série d'exercices n^0 2 : Polynômes

Niveau : Première L

Exercice 1

Soit le polynôme $P(x) = x^3 + ax^2 + bx + 6$ où a et b sont deux nombres réels.

- 1) Déterminer a et b sachant que P(-2) = 0 et P(-1) = 8
- 2) On pose $P(x) = x^3 2x^2 5x + 6$
- 3) a) Factoriser P(x)
 - b) Résoudre dans \mathbb{R} , P(x) = 0
 - c) Résoudre dans \mathbb{R} , P(x+4)=0
 - d) Résoudre dans \mathbb{R} , $P(x) \ge 0$

Exercice 2

On considère le polynôme $P(x) = x^3 - 6x^2 + 3x + 10$

- 1) Calculer P(2). Que peut-on en déduire ?
- 2) Factoriser *P* en utilisant
- a) La méthode d'identification des coefficients
 - b) La méthode de la division euclidienne
 - c) Le schéma de HÖRNER

Exercice 3

On considère le polynôme P défini par $P(x) = -3x^3 + 2x^2 + 3x - 2$

- 1. Montrer que P(x) est factorisable par (x-1) et par (x+1)
- 2. Donner la factorisation complète de P(x)
- 3. Résoudre dans \mathbb{R} , P(x) = 0
- 4. Résoudre dans \mathbb{R} , $P(x) \ge 0$
- 5. Résoudre dans \mathbb{R} , P(x) = -2

Exercice 4

Soit le polynôme $P(x) = x^4 + 2x^3 - 16x^2 - 2x + 15$

- 1) Vérifier que 1 et -1 sont des racines de P.
- 2) a) Factoriser P
- 3) b) Résoudre dans \mathbb{R} , l'équation P(x) = 0
 - c) Résoudre dans \mathbb{R} , l'inéquation P(x) < 0

Douter de tes pouvoirs, c'est donner du pouvoir à tes doutes.

Au fur et à mesure que tu travailles dur, tu finiras par surpasser tous les obstacles durs et à coup sûr, tu obtiendras des résultats sûrs.

IA SAINT-LOUIS

ANNEE SCOLAIRE: 2017/2018

SYSTÈMES D'ÉQUATIONS ET D'INÉQUATIONS

Classe: 1ere L

EXERCICE 1:

Résoudre dans
$$\mathbb{R}^3$$
 le système : (S)
$$\begin{cases} 3x - y + 4z = 1 \\ 2y - 3z = 5 \\ 6z = 3 \end{cases}$$

EXERCICE 2:

Résoudre dans \mathbb{R}^3 les systèmes suivants par la méthode du Pivot de Gauss :

$$(S_1) \begin{cases} 2x + 3y - 5z = 4 \\ x + y - z = 1 \\ -3x - 4y + z = -5 \end{cases} ; \quad (S_2) \begin{cases} -x + 2y + z = -1 \\ 3x - 2y + 3z = 1 \\ 2x + y + z = -1 \end{cases}$$

EXERCICE 3:

Résoudre graphiquement le système : (S')
$$\begin{cases} x-y+2 \geq 0 \\ x+y+2 \geq 0 \\ x \leq 0 \end{cases}$$

EXERCICE 4:

À l'approche de la fête de Saint-Valentin, un artisan chocolatier décide de confectionner des œufs en chocolat. En allant inspecter ses réserves, il constate qu'il lui reste **18kg** de cacao, **8kg** de noisettes et **14kg** de lait.

Il a deux spécialités : l'œuf *Extra* et l'œuf *Sublime*. Un œuf Extra nécessite **1kg** de cacao, **1kg** de noisettes et **2kg** de lait. Un œuf Sublime nécessite **3kg** de cacao, **1kg** de noisettes et **1kg** de lait.

Il fera un profit de **20Frs** en vendant un œuf *Extra*, et de **30Frs** en vendant un œuf *Sublime*. Notons par **x** le nombre d'œufs *Extra* et par **y** le nombre d'œufs *Sublime*.

- 1) Ecrire le système des contraintes.
- 2) Donner son gain s'il vend 30eufs Extra et 5 œufs Sublimes.
- 3) Peut-il vendre 40eufs Extra et 6 œufs Sublimes? Pourquoi?
- 4) Résoudre graphiquement le système trouvé dans la question 1).

G.H Hardi (1877-1947, Angleterre)

ANNEE SCOLAIRE: 2017/2018

[«] Les schémas du mathématicien, comme ceux du peintre ou du poète, doivent être beaux ; les idées, comme les couleurs ou les mots, doivent s'assembler de façon harmonieuse. La beauté est le premier test : il n'y a pas de place durable dans le monde pour les mathématiques laides ».

DEVOIR SURVEILLE N°1 DU PREMIER SEMESTRE

Présentation (1pt)

QUESTIONS DE COURS : Vrai ou faux $(4 \times 1 pt = 04 pts)$

Soit l'équation $ax^2 + bx + c = 0$ avec $a \neq 0$.

- 1) Si a + b + c = 0 alors 1 est une racine de l'équation et l'autre racine est $\frac{a}{c}$.
- 2) Si -1 est une racine de l'équation, l'autre racine est $-\frac{c}{a}$.
- 3) Si a et b sont de signes contraires alors l'équation admet deux solutions (racines) distincts.
- 4) La forme canonique du trinôme $ax^2 + bx + c$ est $a\left[(x + \frac{b}{2a})^2 \frac{b^2 4ac}{4a^2}\right]$

EXERCICE 1: (5pts)

- 1) Résoudre dans IR $(2 \times 1.5 \text{pts} = 3 \text{pts})$
- a) $3x^2 4x + 1 = 0$; b) $3x^2 4x + 1 \ge 0$ 2) Résoudre dans IR^2 le système : $\begin{cases} x^2 + y^2 = 5 \\ xy = 2 \end{cases}$ (2pts)

EXERCICE 2: (10pts)

- 1) Résoudre dans IR^3 : $\begin{cases} -2x+y-z=1\\ x+2y+z=9\\ 3x-y-2z=-14 \end{cases}$ par la méthode du Pivot de Gauss. (2pts)
- 2) Un artisan sculpteur produit des objets A et des objets B. La confection d'un objet A nécessite 6000Frs de matières premières, coûte 25000Frs de main-d'œuvre et sa vente génère un bénéfice de 10800Frs.

La fabrication d'un objet B nécessite 14000Frs de matières premières, coûte 15000Frs de maind'œuvre et sa vente génère un bénéfice de 9000Frs. Chaque jour l'artisan limite ses frais d'investissement à 250000Frs pour la main-d'œuvre et à 112000Frs pour les matières premières.

On désigne par \boldsymbol{x} le nombre d'objets A et par \boldsymbol{y} le nombre d'objets B fabriqués en une journée.

- a) Exprimer, en fonction de x et y, la dépense journalière pour la main-d'œuvre et la dépense journalière pour les matières premières. $(2\times1 pt=2pts)$
- b) Résoudre graphiquement le système satisfaisant aux contraintes de l'artisan. (1+1+2pts=4pts)
- c) Exprimer en fonction de x et y, le bénéfice journalier g réalisé, puis déterminer la production journalière pour laquelle g est maximal. $(2\times1\text{pt}=2\text{pts})$

 \ll En mathématiques, on ne comprrend pas les choses, on s'y habitue \gg John Von Neumann

ANNEE SCOLAIRE: 2018/2019 IA SAINT-LOUIS

Níveau: Première L2 LYCEE DE CAS CAS M. FALL

Devoir surveillé n^0 1 du premier semestre

Durée: 2 heures

Présentation: 1pt

Exercice 1: (8pts)

Soit le polynôme *P* tel que $P(x) = -2x^3 + x^2 + 8x - 4$.

- 1) Calculer P(2). En déduire une factorisation de P(x) par la méthode de Hörner. (1pt+1,5pts)
- 2) Résoudre dans \mathbb{R} l'équation P(x) = 0 puis l'inéquation $P(x) \ge 0$ (1.5pts+2pts)
- 3) Déduire de la résolution de l'équation P(x) = 0, les solutions de l'équation : $-2(x+2)^3 + (x+2)^2 + 8(x+2) 4 = 0$ (2pts)

Exercice 2: (11pts)

- 3) Résoudre dans IR^3 : $\begin{cases}
 -2x + y z = 1 \\
 x + 2y + z = 9 \\
 3x y 2z = -14
 \end{cases}$ par la méthode du Pivot de Gauss. (3pts)
- 4) Une usine produit deux modèles de machines, l'une que l'on appellera modèle A exige 2kg de matière première et de 30 heures de fabrication et donne un bénéfice de 7€. L'autre que l'on appellera B exige 4kg de matière première et de 15 heures de fabrication et donne un bénéfice de 6€. On dispose de 200kg de matière première et de 1200 heures de travail.

On désigne par x le nombre de machines de modèle A à produire et par y le nombre de machines de modèle B à produire.

- a) Ecrire le système des contraintes.(3pts)
- b) Quel est le gain à réaliser si l'usine vend 20 machines de modèle A et 15 machines de modèle B ? (1pt)
- c) Peut-on vendre 30 machines de modèle A et 30 machines du modèle B ? Pourquoi ? (1pt+1pt)
- d) Résoudre graphiquement le système trouvé dans la question a). (2pts)

« Il ne suffit pas d'avoir de bons outils, encore faut-il savoir s'en servir !!! »

Bonne chance

IA SAINT-LOUIS ANNEE SCOLAIRE: 2017/2018

LYCEE DE CAS CAS Classe: 1^{re} L2B / Durée: 2H M. FALL

Questions de Cours : Vrai ou faux (04pts)

Soit le trinôme $ax^2 + bx + c$, avec $a \ne 0$ et Δ son discriminant.

- 1) Si $\Delta < 0$, alors le trinôme n'admet pas de signe.
- 2) Si $\Delta > 0$, alors le trinôme est du signe de a à l'intérieur des racines et du signe de -a à l'extérieur des racines.
- 3) Si $\Delta = 0$, alors le trinôme est du signe de de a partout.
- 4) La forme canonique du trinôme $ax^2 + bx + c$ est $a\left[(x + \frac{b}{2a})^2 \frac{b^2 4ac}{4a^2}\right]$.

Exercice 1: (05pts)

1) Résoudre dans \mathbb{R} :

a)
$$x^4 - 3x^2 + 2 = 0$$
; b) $2x^2 - x - \frac{1}{8} > 0$

2) Résoudre dans \mathbb{R}^2 le système : $\begin{cases} \frac{1}{x} + \frac{1}{y} = 5 \\ xy = \frac{1}{6} \end{cases}$

Exercice 2: (10pts)

- 1) Résoudre dans \mathbb{R}^3 : $\begin{cases} 2x y + z = 5 \\ x + 2y + z = 1 \\ 3x 4y + 2z = 11 \end{cases}$ par la méthode du pivot de Gauss.
- 2) Une usine produit deux modèles de machines, l'une que l'on appellera modèle A exige 2kg de matière première et de 30 heures de fabrication et donne un bénéfice de 7€. L'autre que l'on appellera B exige 4kg de matière première et de 15 heures de fabrication et donne un bénéfice de 6€. On dispose de 200kg de matière première et de 1200 heures de travail.

On désigne par x le nombre de machines de modèle A à produire et par y le nombre de machines de modèle B à produire.

- e) Ecrire le système des contraintes.
- f) Quel est le gain à réaliser si l'usine vend 20 machines de modèle A et 15 machines de modèle B?
- g) Peut-on vendre 30 machines de modèle A et 30 machines du modèle B? Pourquoi?
- h) Résoudre graphiquement le système trouvé dans la question a).

«Ma cohabitation avec les mathématiques m'a laissé un amour fou pour les bonnes définitions, sans lesquelles il n'a que des à-peu-près» **Stendhal**, **Vie de Henry Brulard**

Année scolaire : 2018/2019

BONNE CHANCE

Composition de Mathématiques du 1er Semestre

Exercice 1: (10pts)

I. Répondre par vrai ou faux. Le candidat indiquera sur la copie le numéro de la question et la

V (pour vrai) ou F (pour faux). (1 pt par réponse juste)

- 1. Un polynôme est nul si tous ses coefficients sont nuls.
- 2. Le quotient de deux polynômes est aussi un polynôme.
- 3. $f(x) = x^2(-x+3) + 2x^4$ est un polynôme.
- 4. Le polynôme nul n'a pas de degré.
- II. Pour chacune des questions suivantes, une seule des réponses proposées est exacte. Le candidat indiquera sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Une seule réponse par question est acceptée et aucune justification n'est demandée. (1 pt par réponse juste)
- 1. L'ensemble solution du système d'équations $\begin{cases} 2x + 3y 5z = 4\\ x + y z = 1\\ -3x 4y + z = -5 \end{cases}$ est:
 - **A.** $S = \{(2; -1; 0)\}$ **B.** $S = \{(0; -1; 2)\}$ **C.** $S = \{(-1; 2; 0)\}$
- **2.** Le degré du polynôme *g* défini par : $g(x) = x^4 + 2x^3 16x^2 2x + 15$ est :
- **A.** 3 **B.** 1 **C.** 4 **D.** 2
- 3. Si f est un polynôme de degré 3 et g un polynôme de degré 2 alors le degré du polynôme $f \times$ g est de :
 - **A.** 6 **B.** 5 **C.** 1
- **4.** Si l'équation $ax^2 + bx + c = 0$ admet deux racines x_1 et x_2 alors la forme factorisée du trinôme $ax^2 + bx + c$ est :
- **A.** $(x x_1)(x x_2)$ **B.** $a(x-x_1)(x-x_2)$ **C.** $a(x+x_1)(x+x_2)$ 5. L'ensemble des solutions de l'équation $x^2 = 1$ est :
 - B. $S = \{-1\}$ C. $S = \{1; -1\}$ A. $S = \{1\}$
- **6.** L'ensemble des solutions l'équation $x^2 + 1 \ge 0$ est :
- B. Ø \mathbf{A} . \mathbb{R} C. [-1; 1]

Exercice 2: (10pts)

On considère le polynôme P défini par $P(x) = -3x^3 + 2x^2 + 3x - 2$

- 6. Montrer que 1 et -1 sont des racines du polynôme P. (1pt+1pt)
- 7. En déduire une factorisation complète de P(x).

8. Résoudre dans \mathbb{R} , P(x) = 0

(1pt)

(2pts)

- 9. Résoudre dans \mathbb{R} , $P(x) \ge 0$ et P(x) < 0(1,5+1,5pts)
- 10. Résoudre dans \mathbb{R} , P(x) = -2

(2pts)

 \ll IL NE SUFFIT PAS D'A $\sqrt{0}$ DE BONS OUTILS, ENCORE FAUT-IL SA $\sqrt{0}$ S'EN SER $\sqrt{1}$

IA SAINT-LOUIS Année scolaire : 2017 /2018

Fiche d'exercices sur LIMITE - CONTINUITE - DERIVATION

Classe: 1ère L2B

Exercice 1 : Limites

- 1) Dans chacun des cas suivants, calculer la limite de la fonction f en x_0 .

- a) $f(x) = -4x^2 + x$; $x_0 = -1$. c) $f(x) = \frac{3x}{x+1}$; $x_0 = 1$ b) $f(x) = x^2 3$; $x_0 = 2$. d) $f(x) = \frac{2x-5}{4x+1}$; $x_0 = 0$
- 2) Calculer les limites suivantes :
 - a) $\lim_{x \to +\infty} x^2 + \sqrt{x}$; b) $\lim_{x \to +\infty} \frac{1}{x^3} 7$; c) $\lim_{x \to -\infty} -2x^3$; d) $\lim_{x \to +\infty} \sqrt{x}$; e) $\lim_{x \to 0} \sqrt{x}$; f) $\lim_{x \to +\infty} x^2$; g) $\lim_{x \to \infty} x^2$

Exercice 2: Formes indéterminées

Calculer:

a) $\lim_{x \to +\infty} -x^3 + 2x + 4$; b) $\lim_{x \to -\infty} \frac{-x^2 + 2x + 3}{2x^2 - x + 5}$; c) $\lim_{x \to +\infty} \frac{2x^3 - 3x^2 + 1}{x^2 - x - 2}$; d) $\lim_{x \to 1} \frac{x^3 - 2x^2 + 4x - 3}{x^2 - x}$; e) $\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$

Exercice 3: Continuité

$$Soit f(x) = \frac{x^2 - 1}{x + 1}.$$

- 1) f est-elle continue en 1; -1?
- 2) Montrer que f admet une limite finie en -1.

NB: On conclut que f est prolongeable par continuité en -1.

Exercice 4: Dérivation

- 1) Dans chacun des cas suivants, calculer en utilisant la définition, le nombre dérivé de la fonction
 - a) $f(x) = -x^2 + 4x$; $x_0 = 1$ b) $f(x) = \frac{x-3}{x}$; $x_0 = -1$
- 2) Déterminer f'(x) dérivée de f puis l'ensemble des nombres réels où f est dérivable.
 - a) $f(x) = 4x^2 + 8x 5$; b) $f(x) = -x^3 + 3x 1$; c) $f(x) = x^3 3x$; d) $f(x) = \frac{3-2x}{x-2}$; e) $f(x) = \frac{2x+1}{x-5}$; f) $f(x) = -1 + \frac{2}{x-3}$.

Exercice 5: Etude de fonctions

Soit $f(x) = \frac{x^2 - 2x + 5}{x - 1}$ et (C) sa courbe représentative dans le plan.

- 1) Déterminer Df puis calculer les bornes aux bornes de Df. Préciser une éventuelle asymptote à (C).
- 2) Calculer f'(x) puis étudier son signe.
- 3) a- En déduire le sens de variation de f.
 - b- Dresser le tableau de variation de f.
- Trouver trois réels a, b et c tels que $f(x) = ax + b + \frac{c}{x-1}$ En déduire que la droite (Δ): y = x - 1 est asymptote oblique à (C).
- 5) Tracer (Δ) et (C) dans le même repère.

Devoir de Mathématiques N^0 1 du second semestre

Classe: 1ère L2 B/ Durée: 2H

Présentation (1pt)

Exercice 1: Questions de cours (3pts)

1) Donner une définition d'un polynôme. (1pt)

2) Donner la définition d'une fonction paire et d'une fonction impaire. **(1pt)**

3) Définir le domaine de définition d'une fonction numérique f. (1pt)

Exercice 2: (5pts)

Déterminer l'ensemble de définition de chacune des fonctions numériques suivantes :

1) $f(x) = x^3 - 3x + 4$ (1pt)

4) $f(x) = \frac{x+2}{x^3-x}$ (1pt) 5) $f(x) = \frac{x+1}{x^2-5x+6}$ (1pt) 2) $f(x) = \frac{2x-3}{4x^2+7}$ (1pt)

3) $f(x) = \sqrt{2x-3}$ (1pt)

Exercice 3: (6pts)

Pour chacune des fonctions f ; déterminer l'ensemble de définition ; étudier la parité et conclure pour la représentation graphique dans le plan rapporté à un repère orthogonal.

1) $f(x) = \frac{x^2 + 1}{x^3 + x}$ (1,5pts)

3) $f(x) = -x^3 + \frac{1}{x}$ (1,5pts)

2) $f(x) = \frac{x^2+1}{x^2-4}$ (1,5pts)

4) $f(x) = \frac{x^2 + x}{1 - x^2}$ (1,5pts)

Exercice 4: (5pts)

1) On considère la fonction f définie par : $f(x) = \frac{x^2 - x - 2}{x^2 - x + 1}$

Montrer que la droite (D) d'équation : $x = \frac{1}{2}$ est axe de symétrie de la courbe de f. (2pts)

2) Soit $f(x) = \frac{2x^2 - x - 1}{x + 1}$.

Montrer que le point I(-1; -5) est centre de symétrie de la courbe de f. (3pts)

« Il ne suffit pas d'avoir de bons outils, encore faut-il savoir s'en servir !!! »

Bonne chance