...... Montrer une égalité

Exercice 1

Soit (u_n) la suite définie par : $u_2 = 3$ et $u_{n+1} = \frac{3u_n + 1}{u_n + 3}$ pour tout $n \ge 2$ Démontrer par récurrence que pour tout entier $n \ge 2$ on a $u_n = \frac{2^n + 2}{2^n - 2}$

Exercice 2

On considère la suite numérique (v_n) définie sur $\mathbb N$ par : $v_0 = \frac{7}{8}$ et pour tout $n \geqslant 0$ $v_{n+1} = v_n^2$ Démontrer par récurrence que $v_n = \left(\frac{7}{8}\right)^{2^n}$.

...... Montrer une égalité pour une somme

Exercice 3

Pour tout $n \ge 1$, soit $S_n = \sum_{k=1}^n (2k-1)^2$

Démontrer que pour tout $n \ge 1$, on a : $S_n = \frac{n(2n-1)(2n+1)}{3}$

...... Montrer une inégalité

Exercice 4

Soit la suite (u_n) définie par $u_0 = 0$ et pour tout $n \ge 0$, $u_{n+1} = 3u_n - 2n + 3$

Démontrer par récurrence que pour tout $n \in \mathbb{N}$, on a : $u_n \ge n$.

...... Utiliser les variations d'une fonction.....

Exercice 5

On considère la suite numérique (u_n) définie sur \mathbb{N} par : $u_0 = \frac{2}{3}$ et pour tout entier n $u_{n+1} = u_n (2 - u_n)$.

On considère la fonction $f: x \longmapsto x(2-x)$.

On admet que cette fonction f est croissante sur [0; 1].

Montrer par récurrence que, pour tout entier $n, 0 < u_n < 1$.

Exercice 6

Soit la fonction f définie sur l'intervalle [0; 2] par : $f(x) = \frac{2x+1}{x+1}$

Soit la suite (v_n) définie sur \mathbb{N} par : $v_0 = 2$ et $v_{n+1} = f(v_n)$ pour tout entier naturel n

On admet les propriétés suivantes : • f est croissante sur l'intervalle [0; 2]

• Si $x \in [1; 2]$ alors $f(x) \in [1; 2]$.

Montrer à l'aide d'un raisonnement par récurrence que :

- **1.** Pour tout entier naturel $n, 1 \leq v_n \leq 2$.
- **2.** Pour tout entier naturel $n, v_{n+1} \leq v_n$.

Correction pages suivantes

Exercice 1

Soit (u_n) la suite définie par : $u_2 = 3$ et $u_{n+1} = \frac{3u_n + 1}{u_n + 3}$ pour tout $n \ge 2$ Démontrer par récurrence que pour tout entier $n \ge 2$ on a $u_n = \frac{2^n + 2}{2^n - 2}$

On note $\mathcal{P}(n)$ l'égalité à démontrer : $u_n = \frac{2^n + 2}{2^n - 2}$

• Inititialisation (pour n = 2)

D'une part on a : $u_2 = 3$, d'autre part pour n = 2 on a : $\frac{2^n + 2}{2^n - 2} = \frac{2^2 + 2}{2^2 - 2} = \frac{6}{2} = 3$ donc $\mathcal{P}(2)$ est vrai

• Hérédité

Soit un entier $n \ge 2$, on suppose que $\mathcal{P}(n)$ est vrai c'est-à-dire $u_n = \frac{2^n + 2}{2^n - 2}$, on va montrer que $\mathcal{P}(n+1)$ est vrai c'est-à-dire $u_{n+1} = \frac{2^{n+1} + 2}{2^{n+1} - 2}$

On a:
$$u_{n+1} = \frac{3u_n + 1}{u_n + 3}$$

$$= \frac{3(2^n + 2) + 2^n - 2}{\frac{2^n + 2 + 3(2^n - 2)}{2^n - 2}}$$

$$= \frac{3\left(\frac{2^n + 2}{2^n - 2}\right) + 1}{\frac{2^n + 2}{2^n - 2} + 3}$$

$$= \frac{3(2^n + 2) + 2^n - 2}{\frac{2^n + 2}{2^n + 2} + 3}$$

$$= \frac{3(2^n + 2) + 2^n - 2}{2^n + 2 + 3(2^n - 2)}$$

$$= \frac{3(2^n + 2) + 2^n - 2}{2^n + 2 + 3(2^n - 2)}$$

$$= \frac{3 \times 2^n + 6 + 2^n - 2}{2^n + 2 + 3 \times 2^n - 6}$$

$$= \frac{2(2^n \times 2 + 2)}{2(2^n \times 2 - 2)}$$

$$= \frac{2(2^n \times 2 + 2)}{2(2^n \times 2 - 2)}$$

$$= \frac{2(2^n \times 2 + 2)}{2(2^n \times 2 - 2)}$$

Conclusion

D'après le principe de raisonnement par récurrence $\mathcal{P}(n)$ est vrai pour tout $n \geq 2$.

Exercice 2

On considère la suite numérique (v_n) définie sur $\mathbb N$ par : $v_0 = \frac{7}{8}$ et pour tout $n \geqslant 0$ $v_{n+1} = v_n^2$ Démontrer par récurrence que $v_n = \left(\frac{7}{8}\right)^{2^n}$. On note $\mathcal P(n)$ l'égalité à démontrer : $v_n = \left(\frac{7}{8}\right)^{2^n}$.

• Inititialisation (pour n = 0)

D'une part on a : $v_0 = \frac{7}{8}$, d'autre part pour n = 0 on a : $\left(\frac{7}{8}\right)^{2^n} = \left(\frac{7}{8}\right)^{2^0} = \left(\frac{7}{8}\right)^1 = \frac{7}{8}$ donc $\mathcal{P}(0)$ est vrai.

• Hérédité

Soit un entier $n \ge 0$, on suppose que $\mathcal{P}(n)$ est vrai c'est-à-dire $v_n = \left(\frac{7}{8}\right)^{2^n}$

on va montrer que $\mathcal{P}(n+1)$ est vrai c'est-à-dire $v_{n+1} = \left(\frac{7}{8}\right)^{2^{n+1}}$

On a:
$$v_{n+1} = v_n^2 = \left[\left(\frac{7}{8} \right)^{2^n} \right]^2 = \left(\frac{7}{8} \right)^{2^n \times 2} = \left(\frac{7}{8} \right)^{2^{n+1}}$$

Donc $\mathcal{P}(n+1)$ est vrai et donc $\mathcal{P}(n)$ est héréditaire.

• Conclusion

D'après le principe de raisonnement par récurrence $\mathcal{P}(n)$ est vrai pour tout $n \ge 0$.

...... Montrer une égalité pour une somme

Exercice 3

Pour tout $n \ge 1$, soit $S_n = \sum_{k=1}^n (2k-1)^2$

Démontrer que pour tout $n \ge 1$, on a $S_n = \frac{n(2n-1)(2n+1)}{3}$

On note $\mathcal{P}(n)$ l'égalité à démontrer : $S_n = \frac{n(2n-1)(2n+1)}{3}$

• Inititialisation (pour n = 1)

D'une part $S_1 = 1^2 = 1$,

d'autre part $\frac{1(2 \times 1 - 1)(2 \times 1 + 1)}{3} = \frac{1 \times 3}{3} = 1$ donc $\mathcal{P}(1)$ est vrai

• Hérédité

Soit un entier $n \ge 1$, on suppose que $\mathcal{P}(n)$ est vrai c'est-à-dire $S_n = \frac{n(2n-1)(2n+1)}{3}$, on va montrer que $\mathcal{P}(n+1)$ est vrai c'est-à-dire $S_{n+1} = \frac{(n+1)\left[2(n+1)-1\right]\left[2(n+1)+1\right]}{3}$

ou $S_{n+1} = \frac{(n+1)(2n+1)(2n+3)}{3}$

Pour pouvoir utiliser l'égalité supposée vraie pour S_n , il faut trouver une relation entre S_{n+1} et S_n .

Méthode :

La relation est :
$$S_{n+1} = S_n + (2n+1)^2$$
.
En effet : $S_{n+1} = \sum_{k=1}^{n+1} (2k-1)^2 = \sum_{k=1}^{n} (2k-1)^2 + (2(n+1)-1)^2 = S_n + (2n+1)^2$

On a:
$$S_{n+1} = S_n + (2n+1)^2$$

$$= \frac{n(2n-1)(2n+1)}{3} + \frac{3(2n+1)^2}{3}$$

$$= \frac{n(2n-1)(2n+1) + 3(2n+1)(2n+1)}{3}$$

$$= \frac{(2n+1)\left[n(2n-1) + 3(2n+1)\right]}{3}$$

$$= \frac{(2n+1)(2n^2 - n + 6n + 3)}{3}$$

$$= \frac{(2n+1)(2n^2 + 5n + 3)}{3}$$

$$= \frac{(2n+1)(2n+3)(n+1)}{3}$$

Remarque : un calcul rapide permet de vérifier que l'on a bien : $2n^2 + 5n + 3 = (2n + 3)(n + 1)$

Donc $\mathcal{P}(n+1)$ est vrai et donc $\mathcal{P}(n)$ est héréditaire.

• Conclusion

D'après le principe de raisonnement par récurrence $\mathcal{P}(n) \text{ est vrai pour tout } n \geqslant 1.$

...... Montrer une inégalité.....

Exercice 4

Soit la suite (u_n) définie par $u_0 = 0$ et pour tout $n \ge 0$, $u_{n+1} = 3u_n - 2n + 3$

Démontrer par récurrence que pour tout $n \in \mathbb{N}$, on a : $u_n \ge n$.

On note $\mathcal{P}(n)$ l'égalité à démontrer : $u_n \geqslant n$

• Initialisation (pour n = 0)

On a : $u_0 = 0$ donc $u_0 \ge 0$.

et donc $\mathcal{P}(0)$ est vrai

• Hérédité

Soit un entier $n \ge 0$,

on suppose que $\mathcal{P}(n)$ est vrai c'est-à-dire $u_n \geqslant n$,

on va montrer que $\mathcal{P}(n+1)$ est vrai c'est-à-dire $u_{n+1} \geqslant n+1$

On a:

$u_n \geqslant n$

 $3u_n \geqslant 3n$ Multiplication par un nombre positif, le sens de l'inégalité ne change pas

$$3u_n - 2n \geqslant n$$

$$3u_n - 2n + 3 \geqslant n + 3$$

or
$$n+3 \geqslant n+1$$

 $donc 3u_n - 2n + 3 \geqslant n + 1$

Donc $\mathcal{P}(n+1)$ est vrai et donc $\mathcal{P}(n)$ est héréditaire.

• Conclusion

D'après le principe de raisonnement par récurrence $\mathcal{P}(n)$ est vrai pour tout $n \ge 0$.

...... Utiliser les variations d'une fonction.....

Exercice 5

On considère la suite numérique (u_n) définie sur \mathbb{N} par : $u_0 = \frac{2}{3}$ et pour tout entier n, $u_{n+1} = u_n (2 - u_n)$.

On considère la fonction $f: x \longmapsto x(2-x)$.

On admet que cette fonction f est croissante sur [0; 1].

Montrer par récurrence que, pour tout entier $n, 0 < u_n < 1$.

• Inititialisation (pour n = 0)

On a
$$u_0 = \frac{2}{3}$$
 donc $0 < u_0 < 1$:

donc $\mathcal{P}(0)$ est vrai

Hérédité

Soit un entier $n \ge 0$,

on suppose que $\mathcal{P}(n)$ est vrai c'est-à-dire $0 < u_n < 1$,

on va montrer que $\mathcal{P}(n+1)$ est vrai c'est-à-dire $0 < u_{n+1} < 1$.

On a : $0 < u_n < 1$

La fonction f est croissante sur [0; 1], donc : $f(0) < f(u_n) < f(1)$

soit
$$0 < u_{n+1} < 1$$
.

Donc $\mathcal{P}(n+1)$ est vrai et donc $\mathcal{P}(n)$ est héréditaire.

• Conclusion

D'après le principe de raisonnement par récurrence $\mathcal{P}(n)$ est vrai pour tout $n \ge 0$.

Exercice 6

Soit la fonction f définie sur l'intervalle [0; 2] par : $f(x) = \frac{2x+1}{x+1}$

Soit la suite (v_n) définie sur \mathbb{N} par : $v_0 = 2$ et $v_{n+1} = f(v_n)$ pour tout entier naturel n.

On admet les propriétés suivantes : • f est croissante sur l'intervalle [0; 2]

• Si
$$x \in [1; 2]$$
 alors $f(x) \in [1; 2]$.

1. Montrer à l'aide d'un raisonnement par récurrence que pour tout entier naturel $n,\ 1\leqslant v_n\leqslant 2.$

Soit $\mathcal{P}(n)$ l'inégalité à démontrer : $1 \leq v_n \leq 2$.

• Inititialisation (pour n = 0)

On a : $v_0 = 2$ donc $1 \leq v_0 \leq 2$

et donc $\mathcal{P}(0)$ est vrai

• Hérédité

Soit un entier $n \ge 0$,

on suppose que $\mathcal{P}(n)$ est vrai c'est-à-dire $1\leqslant v_n\leqslant 2,$

on va montrer que $\mathcal{P}(n+1)$ est vrai c'est-à-dire $1\leqslant v_{n+1}\leqslant 2.$

On a :
$$1 \leqslant v_n \leqslant 2$$

La fonction f est croissante sur [0; 2], donc : $f(1) \leq f(v_n) \leq f(2)$

soit
$$\frac{3}{2} \leqslant v_{n+1} \leqslant \frac{5}{3}$$
. or $1 \leqslant \frac{3}{2}$ et $\frac{5}{3} \leqslant 2$ (Remarque: $2 = \frac{6}{3}$)

donc $1 \leqslant v_{n+1} \leqslant 2$

Donc $\mathcal{P}(n+1)$ est vrai et donc $\mathcal{P}(n)$ est héréditaire.

• Conclusion

D'après le principe de raisonnement par récurrence $\mathcal{P}(n)$ est vrai pour tout $n \geqslant 0$.

2. Montrer à l'aide d'un raisonnement par récurrence que pour tout entier naturel $n, v_{n+1} \leq v_n$.

On note Q(n) l'inégalité à démontrer : $v_{n+1} \leq v_n$.

• Inititialisation (pour n = 0)

On a:
$$v_1 = f(v_0) = f(2) = \frac{5}{3}$$

et $v_0 = 2$ donc $v_1 \leqslant v_0$.

Donc Q(0) est vraie.

• Hérédité

Soit un entier $n \ge 0$, on suppose que Q(n) est vrai c'est-à-dire $v_{n+1} \le v_n$,

on va montrer que Q(n+1) est vrai c'est-à-dire $v_{n+2} \leq v_{n+1}$.

```
On a :
```

$v_{n+1} \leqslant v_n$.

 $v_n \in [1; 2]$ d'après la question 1.

 $v_{n+1} \in [1; 2]$ car $v_{n+1} = f(v_n)$ avec $v_n \in [1; 2]$. (voir propriété de f).

f est croissante sur $[0\,;\,2],$ donc :

$$f(v_{n+1}) \leqslant f(v_n)$$

soit
$$v_{n+2} \leqslant v_{n+1}$$

Donc Q(n+1) est vrai et donc Q(n) est héréditaire.

• Conclusion

D'après le principe de raisonnement par récurrence $\mathcal{Q}(n)$ est vrai pour tout $n \geqslant 0$.

Nathalie Arnaud - Lycée Théophile Gautier - Tarbes